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We examine the Cerenkov effect in a transparent anisotropic medium by the 
methods of quantum electrodynamics. We first show that in such a medium the 
electric field intensity is not transverse. By resolving the field we distinguish the 
contributions to the intensity of the radiation corresponding to the transverse and 
longitudinal components of the field. Focusing also on the role of the spin, we 
show that its effect is significant since the intensity can increase or decrease 
compared with that of a spinless particle. 

1. INTRODUCTION 

Before 1934, it was generally accepted that only accelerating particles 
can radiate. Indeed there was some argument in scientific journals as to 
whether a particle which is accelerating uniformly can radiate (see, for 
instance, Born, 1909; Schott, 1915; Drukey, 1949; Bondi and Gold, 1955; 
Fulton and Rohrlich, 1966). Cerenkov's (1934, 1936) discovery in that year 
that a nonaccelerating particle can radiate therefore aroused great interest. It 
was not long before Tamm and Frank (1937) came up with an explanation, 
based on theoretical considerations, that a charged particle moving in a 
medium even with uniform velocity can radiate provided its velocity is greater 
than the phase velocity of light in that medium, that is, 

c 
v > - (1.1) 

n 

The relevant computations were carried out by the methods of classical 
electrodynamics. This was followed by extensive studies on several aspects 
of the phenomenon. The methods employed included quantum electrodynam- 
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ics. The first theoretical physicists to use quantum electrodynamics were 
V. L. Ginsburg and A. A. Sokolov. Using a phenomenological approach to 
account for the quantum properties of the medium, Sokolov (1940) obtained 
for the angle of radiation the expression 

1 nco_hh (1 - n -2) (1.2) 
c o s O = ~ +  2cp 

where 13 = vlc and n is the refractive index of the medium. For the intensity 
of radiation he obtained 

e 2 i [ I ~  W=--c  13 todto 1 132n 2 cp13--(1 - n  -2) 

n2to2]~ 2 
+ ~ (1 - n -n) (1.3) 

It is easy to see that when h ~ 0 we recover the expressions obtained by 
Tamm and Frank by the classical approach. Other investigations which used 
the methods of quantum electrodynamics include Taniuti (1951), Tidman 
(1956), Neatman (1953), Schiff (1955), and Tauch and Watson (1948, 1949). 

Loskutov (1960) examined the relation between the spin of a particle 
and the polarization of its radiation. In all the above cases, the media consid- 
ered were isotropic. 

As in the case of the classical approach, quantum methods extended to 
other types of media: anisotropic, uniaxial crystals. 

One distinctive feature of anisotropic media compared with isotropic 
media is that in the former case, the field of radiation is not transverse. This 
would imply that not all the energy radiated should be attributed to the 
Cerenkov effect. A similar picture may be referred to in the case of plasma, 
where because of anisotropy, longitudinal oscillations occur. The objective 
of this paper, being an extension of a previous one (Kukanov and Orisa, 
1971), is to effect a separation of the contributions to the radiation between 
the transverse and longitudinal components. We shall also examine conditions 
for the existence of the radiation and obtain for the case of anisotropic 
media, conditions similar to those obtained by Tamm and Frank for the 
isotropic medium. 

One advantage of resolving the field into transverse and longitudinal 
components as is being contemplated here is that this will make any study 
of the polarization of the radiation easier. Lastly, we shall consider a particle 
possessing spin, in order to pay attention to the role of the spin in the process 
of radiation. 

The Cerenkov effect has found application in technology and in particular 
in the physics of high energy [(Jelly, 1960; Zrelov, 1964, 1968)]. These 
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applications are based on the classical results. It is hoped that studies such 
as the present one can lead to applications where the focus will be on the 
quantum effects. 

In the next section, we shall consider the characteristics of the field of 
radiation in anisotropic media. The third section is devoted to the computation 
of the energy loss. The results are expressed in terms of elliptic integrals. 
the paper then concludes with an examination of the results. We also show 
here that previous results for the isotropic medium can be recovered by an 
appropriate limit process. 

2. QUANTIZATION OF THE E L E C T R O M A G N E T I C  FIELD IN 
A M E D I U M  

In a medium, Maxwell's equations take the form 

OH~ = 1 OD~ OE~ _ 1 OB~ 
e~f~ OXf~ c Ot ' e ~  OX~ c Ot 

OD~ OB~ 
- -  - -  - -  - -  0 

ox,~ ox~ 

The electric and magnetic inductions are connected with the fields by the 
relations 

D,~ = e,~Ea, B,~= ix,~H~ 

where e ~  and p.~ are given by (i00) e ~  = el 0 ; Ix~,[~ = 
0 e3 

Ixl 

0 Ix3 
(2.1) 

For a nondispersive medium, e,~a and Ix,~ are constant. We choose a gauge 
in which the scalar potential is zero, so that 

10A~ OA~ 
E~ - c Ot' B~ = e ~  OX~ 

Then the vector potential A~ satisfies the equation 

-1 - -  + ~5 e ,~  A~ = 0 (2.2) e ~ x  ex~ OX~OX~ -~  

with the supplementary condition 

OA~ = 
E~-~--~ 0 (2.3) 
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It is usual to make a Fourier expansion of the vector potential. Alexeev and 
Nikitin (1965) have generalized the methods of Sokolov and Ginsburg for 
the isotropic medium to the case of anisotropic media. Making use of both 
ideas, we express the solution of equation (2.2) in the form 

[A~.i;\" 2 -1/2 
A = L  -3/2 ] ~ / ~  ) (Ce-i~ i~ (2.4) 

where L is the dimension of an arbitrary elementary cube and the amplitude 
C consists of classical and quantum parts. We may thus write 

C = / ( l  

where l is the classical part such that 

d((oZEa13) 

and the quantum par t /E satisfies the commutation relation 

/q,J /2,J'  --/~,J/q,J = 8qq,~jj, 
Assuming that initially there are no photons in the field, we can put 

= 

/ , J q  = o 

The system (2.2) has nontrivial solutions if 

D ( n  2 - n2+l)(n 2 - n21) = 0 

where 

D = )zi-2~-~(81 sin20 + 83 cos20)(p~t sin20 + ~3 cos20) =~ 0 

This gives two real values of n corresponding to two types of radiated waves, 
given by 

n '  - -  n +l = = 

n 2 = n21 = n 2 = 

connected with the wave vector by 

(D 
q j = n j  c 

81 ~ILI ~IL3 
~1 sin20 + ~L3 c os20 

1s 
81 sina0 + 83 cos20 

( j= ~,e) 
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The corresponding normalized solutions become 

l~ = (sin q~, - c o s  q~, 0) (2.5) 

le = (e3 cos 0 cos % e3 cos 0 sin q~, - e l  sin 0) 
(e~ sin20 + e] COS20) 1/2 (2.6) 

We represent the unit vector in the direction of the wave vector as 

-q = K = (sin 0 cos q0, sin 0 sin q~, cos 0) (2.7) 
q 

We then note that 

I ~ ' I ~ = I ~ ' K = 0  

(.__~3. ~ ~_..1) sin 0 cos 0 
It" K = (~  sin20 ~_ ~ cos20)l/2 :# 0 

Thus the vector l, is not transverse. To resolve le into transverse and longitudi- 
nal components, we note that the vectors 

K A k ~ K A (K ^ k ~ 
[1 - ( K ' k ~  1/2 = e l ;  [1 - -  ( K ' k 0 ) 2 ]  1/2 = e 2 ;  K 

form a system of  mutually orthonormal vectors; k ~ is the unit vector along 
the optical axis. 

We then resolve 1~ so that 

l~ = (IE'el)el + (l~-e2)e2 + (I~'K)K 

where 

(E3 -- El) sin 0 cos 0 
(!~, K) = (E~ sin20 + e32 cos20) u2 

( / ~ ' e 0  = 0 

el sin20 + e3 cos20 
(l~. e2) = (e~ sin20 + e3 cos20) 1/2 

It is easy to verify that 

(le'eO 2 + (/a'e2) 2 + (la'K) 2 = 1 

(2.8) 

(2.9) 

3. EVALUATION OF E N E R G Y  LOSS 

For a particle possessing spin, the interaction energy has the form 

e(oL. A )  

where e is the charge on the particle and oL is the 4 • 4 Dirac matrix. Using 
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the method of perturbation (Sokolov, 1958), we find for the probability of 
radiation the expression 

e cf( ) wj - 2~h F jg  K K' d3q (3.1) 
c 

where 

[( ~ l  k-i ' l  + 2 
Fj = _1 - KK'] - - ~ J l )  .lj + - ~ ;  [(lj.k) 2 - (ly.k)(l; q)] 

+ _ ( 1 _  + SS'LK K, KK, j--/g-]l~ "~j 

(1 - - 

In going from discrete to continuous spectrum, we have used the relation 

,f L-3 ~" --'> ~ 3  d3q 

(Sokolov, 1958). 
In (3.1),-~hs (s = ~ 1) is the projection of the spin along the momentum 

vector of the particle, hk, hcK and hk', hcK' are the momentum and energy 
of the particle respectively before and after the act of radiation, and chko is 
the rest energy such that K = (k 2 + k0Z) 1/2. Also k '  = k - q. 

In problems of this nature, it is usual to consider the particle moving 
initially either along the optical axis or perpendicular to it. 

(i) Particle initially moves along the optical axis. When the particle 
initially moves along the optical axis, k = (0, 0, k) and the ~-function in 
(3.1) is independent of q0. Integration with respect to ~ merely leads to a 
factor of 2a'r. The ~-function is then a function of 0 and o~. To integrate with 
respect to 0, we make the substitution 

nj cos 0 = tj (3.2) 

We then use the properties of the ~-function of complex argument noting 
that for j = p~ 
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q2 d q _  1 o) n3 do) 
A/re 2c 3 81 

n 3 d(cos 0) = el~L3 dt 

and fo r j  = e 

q2 dq _ 1 o) s[e~ sin20 +e32cos 20) 
,/l/re 2C 3 ~lbl /'/e~k 2 2 gig3 

n~ 3 d(cos 0) = tx183 dt 

After some computation using the above relations and substitution, we find 
for the energy radiated in unit time 

~l  = w~ + w p ) +  w~ ('~ 

e f[ 
= -  ~ L 3  (TI. t __ [3-1) wi c 

to do) • 
(1 + 4 u j ~ )  u2 

A'o) do) M 
(1 + 4uer~) u2 

q_ e 2 
~ sin20e f ~L,{I + 

Argo) do) 
• 

(1 + 4uere) ua 

W2(,oo~)e2f[ = - : ~ 1  (,r~ - f3 - ~ )  + 
C 

At~ do) 
• 

(1 + 4uere) l/z 

e2 I [ (  o)h 
+ ~ c o s 2 0 ~  Ix1 1 - c - ~  

Al~ do) 
X 

(1 + 4u~rO m 

ss' { + --s (~  _ f~-l) 

-t- ~ ("i'~ --  ~ - 1 )  

ss( 
* 1 -  c-~ 

ss,{ 

.)(1 

+ - -  (1 - %13 -1) 
cp 

+ - -  (1 - TE~ -1 )  
cp 

o)~ } + - -  (1 - ~-EI3 -1) 
cp 

o h   ss(, 
2- - 

(3.3) 

(3.4) 

(3.5) 
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The fol lowing notations have been used: 

mtr~- 1 + -  
E1 

Along = (E3 - -  E l / 2  

toh 

2cp 

= /1  - 2o~___hh + 
A 

1_ cpf  

8 3 - -  E1COS20e 

E 1 sin20e cos20e 

e~ sin20e + E 3 COS20e 

 p/j 

83 - -  El  
Ue - -  _ _  

El 

1 
r e = -~- q'- ~ ( ~ 1 8 3  - -  1) 

2[(E 3 -- EI)/EI](~ - l  -- ~ ) r  e -- 1s163 -- (1 + 4uerO u2] 
COS20e = (3.6) 

2 [ ( 8 3  - -  E I ) ] E 1 ] { ~ I E  3 - -  [(83 - -  8 1 ) / 8 1 ] ( ~  -1  - -  ~ ) 2 }  

and "rj is the posit ive root o f  the equation 

ufr 2 + 7 - r i = 0 

For  the wave  j = tr, make  in the above notations where necessary 

8i -'-) [-Li, [-Li --~ 8i (i = 1, 3) 

I f  in (3.6) we expand (1 + 4uerE) 1/2, simplify, and put el = 83 (isotropic 
case), we obtain 

1 toh 
cos20 = ~ + (1 - n-2); n 2 = et~ [see (1.2)] 

2cp 

(ii) Particle initially moves perpendicular to the optical axis. In this 
case k = (kl, k2, 0) and the 5-function now depends on 0 and q~. It is more  
convenient  to integrate first with respect  to q~. Again we use the propert ies 
of  the 3-function of  complex  argument,  namely  

~ { f ( x ) }  ~- E .~(X - -  Xi) 

If'(x)l 
where x i are the simple roots o f  the equat ion f (x)  = 0. Here 
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o r  

and 

where  

and 

O) 
f ( x )  = K -  K '  - 0  C 

I 
nj sin 0 cos t~ ~s - 1) = 0 

to k sin 0 sin t~ f ' ( x )  = nj c 

k cos t~ = ki cos r + k2 sin r 

k = ( ~  + k~) u2 

N e x t  w e  again make  the substitution 

nj cos 0 = tj 

so that the intensity of  radiation takes the fo rm 

w ~ = w~ + w~ (tr) + w~ (l~ 

where 

w~=~cj o-- S -S- 1-c-~ 

X [ ~ 3  -~- ~L3~2(61~3 - -  1) - I~l(rl~ 

• ~'r3 ] 
61~ 1 t 2 

W~(tr) -'~ 2e2f ~176 - ~ E  1 ' t - - A  - 1 - sst ( (alp~)) 

+ ro)u~ - I x lur  2 

• Ao § Al A2 
61&l fl + - -  ~16163 - -  (63 - -  E I ) ~  

A3 ] 
X q'- {~1E163 __ (63 __ El)t2} 2 

(3.7) 

(3.8) 

(3.9) 
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with 

and 

with 

Further, 

Ao = }-L2el~UE: 

Al = Ixlr 2 

a ~  = ~ e  ( ~ <  - 1 ) . ~  - g  

A3 -- - ~a~e3(13 -~ - 5e) 2 

We~~176176176 in--7- ~ 1 -  C~ 

• Bo + Bit 2 + B 2  

~Lle le  3 - -  ( e  3 - -  I~l)t  2 

"q- { ~ I E I E  3 - -  (E 3 - -  E l ) t2}  2 

B o  = _ l ,  Jl~l~2 _ L (13-1 _ ,:~)2 
El 

1 
BI - ~uE 

E1 

B2 = ~lzele3Ss 2 + (13 -1 - ~)21*1(el + ~3) 

B 3  = - ~*2~2s _ y)~  

ro = 13 -1 + Y(elt*~ - 1) 

(3.10) 

= [uE[[(fl + a2)(b 2 - fl)],/2 (3.11) 
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where 

a~ = u~ l + (e3/2el -- reue)2J + 1 

b~2 = u~ 1 + (e3--~l - - r ~ j J  - 1 

For n we make the change ai -+ Ixi; Ixi -+ ai. The integrals (3.8)-(3.10) are 
elliptical integrals. Thanks to Byrd and Friendman (1954), we can express 
them in standard forms. This will give us a clearer picture for analysis. For 
this purpose we use the substitution 

sin q~' t (a z + b2) 1/2 
= -~ kaZ + t2) , b > t > 0  

As a consequence of the requirement that the expression under the radical 
sign in (3.1) be positive, we have complete elliptic integrals. We can therefore 
represent the intensity of radiation in the following form: 

W~ 2e2[  todto ~1 s s ' ( t O c ~ )  } 
- -  2 2 1/2 q -  l - ~rc lu~l(a~ + bo. ) [ 

X [{Ix3 + Ix3~2(Etlx3 - 1) - Ixt(ro + r~)u~}F(S~) 

-- bq2gu~l(a2~ + b2)E(S~) - a2~F(S~)} 

- t.zlet(I-qell~lr~ + a]) {a~H("/2' So') -k I.LIE1F(sIx)} ] (3.12) 

( - r rc j lue [ (~T-b~)  ' a  1 + ~  1 -  

x [AoF(s0 + e~lx~(e~tx~Al + a~) {a~II(a02, se) + eAxlF(se)} 

A2 
nt- I & I E 1 E 3 ( ~ I E 1 E 3  -t- ( E  3 - -  gl)a~) {(s -- al)a~II(a2l, s~) 

+ ~te~e3F(s0} 
$2 ~ 2 r S 4  __ ~,4 __ , ' ~ 2 . 2 ~ 1 2  (02 2 2 

+ A 3 ii, tE~-~30~2/( Ul x-'--.tloE:al; -2-U - - ~  F(sz) + 2(1 o~20s~2 

(e~2t- s2)(s 2 - 2a2s 2 + 2or 2 - a4)H(ot2, s~)~.] + (3.13) 
J/ O~ I )S~  2 ( 1 -  2 4  
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W~0~ - - - -  luEl(a~ 1 + 1 - 

• [Bo + Bl{(a  2 + b2)E(sE) - aZF(se)} 

+ Bz 

IxlEIE3(IxlelE 3 + (E 3 --  e0a  2) 

• {(e3 - el)a2II(ot~, sO + Ix18183F(se)} 

B3 
- - 20qs :e  )F(sr) + 2(1 - OL2)(IxlEIE3a2) 2 {($2 Or4 2 2 t2 

_J_ 2 2 ~1(0r 1 - -  s~)E(sO 

] 
- 2alses~ + 2a~ - (x4)II((x 2, se)) 

J 
(3.14) 

S t2  = 1 - s 2, F(se), E(s), and II(oL, s) are the complete elliptic integrals of 
the first, second, and third kinds, respectively. In the foregoing expressions, 
the following notations have further been used: 

s j  = + 

a~)sr ~ 2  = (Ixl81 -{- 2 2 

~181 

(l.tl81 + z 2 a8)$8 

IxIEI 

{ i x l e l e 3  -{- (83 - -  e l ) a ~ } s ~  

IxIEI83 

4. CONCLUSION 

The field of radiation has been resolved into its transverse and longitudi- 
nal components. The energy loss through radiation therefore reflects the 
contributions from these two components. We find in taking the limits 8~ = 
e3 = E and IX1 = IX3 = tx that sj = c 9 = 0, so that we can use the properties 
of the elliptic integrals 

F(Tr/2, O) = E(Tr/2, 0) = H('tr/2, 0, 0) = 7/2 



Cerenkov Radiation in Anisotropie Media 557 

We then obtain for the isotropic limit 

W~ (t~ = 0 

as should be expected 

W • = W • + We • (n 2 = Ep,) 

e2f [ 1 toh 
= - -  oodto 1 132n 2 c cp13 

{n~ - n-4)] 
- - ( 1  - n-~) + \ 2-Tp-pl 

This agrees with Sokolov's result [see above, equation (1.3)], except for a 
factor 13. The above result confirms our earlier assertion that the whole energy 
loss cannot be attributed to the Cerenkov effect alone. 

We also stated in the introduction that focus will be on the role of the 
spin. Examination of the expressions (3.3)-(3.5) and (3.12)-(3.14) shows 
that this role is governed by the quantity A. Whether or not the spin plays 
any role depends upon A being real, that is, if 

1 > 2t~ ( 13-1 - t ~  2cp 

o r  

13-' - 2cp < 5 

o r  

o~__hh < 1 132)u2 / cp -~{1~ (1- (4.1) 

When this condition is satisfied, the expressions for the energy show that 
the role of the spin can lead to an increase or decrease of radiation determined 
by the quantity 

toh 
1 - -  - -  

cp13 

Thus, if 13 = v/c > tohlcp, the intensity increases when there is no spin flip. 
If, however, radiation is accompanied by spin flip, the intensity decreases. 
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But if [3 < ~oh/cp the reverse occurs; but note (4.1). Physically, we note that 

toh _ energy of photon (4.2) 
cp kinetic energy of particle 

Thus whether an increase or decrease in energy loss occurs as a result of the 
spin behavior will depend on the ratio of (4.2) in relation to v/c: 

f n o  spin flip 
v > energy of photon l sp in  ignored 
c KE of particle Lspin flip 

Further, we must ensure that the expression for the intensity of radiation 
is real. This is met by the requirement that the expression under the radical 
sign in (3.11) is positive and this will be satisfied if b/> 0, which gives 

g3P~l -- r~ z > 0 or 

( j  = e) 

81P~3 - r~ > 0 or 

( j =  ~) 

E3~1_ ([3_1 + toh }2 2cp (p, le3 -- 1) > 0 

EIO~3_ {~_1 + toh }2 2cp (e~p~3 - 1) > 0 

(4.3) 

For an isotropic medium this reduces to 

{ ntoh }2 1 - [3-1n-1 + ~ ( 1 - n  -2) > 0  (4.4) 

and reduces to the classical condition by Tamm and Frank when h -+ 0. 
Thus (4.3) and (4.4) provide us with equivalent conditions for the radiation 
of the corresponding waves in anisotropic media. 

Finally, we see that the pattern of radiation when the particle initially 
moves along the optical axis is similar to what obtains in the case of an 
isotropic medium. Here as in the case of an isotropic medium there is a well- 
defined cone of radiation. There is no such well-defined cone when the 
particle initially moves perpendicular to the optical axis. This is because the 
cone now depends on both 0 and q~. This is also borne out by the fact that 
in the classical case only one wave is radiated when the particle initially 
moves along the optical axis (Ginsburg, 1940a, b; Zrelov, 1968). If in (3.3) 
we put h = 0, then W~ = 0. Thus only the wave j = e contributes to 
the radiation. 
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